CAD-driven pattern recognition in reverse engineered models

S. Gauthier^{1,2} W. Puech¹ R. Bénière² <u>G. Subsol¹</u>

¹Research-team ICAR, LIRMM, CNRS / Univ. Montpellier, France ²C4W, Montpellier, France

gerard.subsol@lirmm.fr

February 26, 2019

Experimental Results

Perspectives

Reverse Engineering

S. Gauthier et al. Analysis of digitized 3D mesh curvature histograms for reverse engineering. Computers in Industry, 2017.

Experimental Results

Perspectives

Reverse Engineering

S. Gauthier et al. Analysis of digitized 3D mesh curvature histograms for reverse engineering. Computers in Industry, 2017.

- \Rightarrow (Re)create a CAD model (primitives, parameters, intersections)
- \Rightarrow Modify an existing object
- \Rightarrow Perform non-destructive control

Experimental Results

Perspectives

Reverse Engineering

- \Rightarrow (Re)create a CAD model (primitives, parameters, intersections)
- \Rightarrow Modify an existing object
- \Rightarrow Perform non-destructive control

Experimental Results

Reverse Engineering

- \Rightarrow (Re)create a CAD model (primitives, parameters, intersections)
- \Rightarrow Modify an existing object
- \Rightarrow Perform non-destructive control

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives
000	00000	00	00

Beautification

F. Langbein. Beautification of reverse engineered geometric models. PhD thesis, Cardiff University, 2003.

- C. Gao et al.. Local topological beautification of reverse engineered models. Computer-Aided Design, 2004.
- I. Kovács et al.. Applying geometric constraints for perfecting CAD models in reverse engineering. Graphical Models, 2015.
- S. Oesau et al.. Planar shape detection and regularization in tandem. Computer Graphics Forum, 2016.

J. Chen and H. Feng. Idealization of scanning-derived triangle mesh models of prismatic engineering parts. International Journal on Interactive Design and Manufacturing (JJIDeM), 2017.

Y. Li et al.. Globfit: Consistently fitting primitives by discovering global relations. ACM Transactions on Graphics (TOG), 2011.

\Rightarrow based on geometric **relationships** between primitives

S. Gauthier et al. Orientation Beautification of Reverse Engineered Models. GRAPP/VISIGRAPP, 2017.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

CAD-driven Beautification

H. Vilmart et al.. From CAD assemblies toward knowledge-based assemblies using an intrinsic knowledge-based assembly model. Computer-Aided Design and Applications, 2018.

 \Rightarrow but beautification may also be based on CAD knowledge:

- Feature: fixed subset of primitives (*screw/nut*)
 → alignment, dimension constraints...
- Pattern: repetition of features (*circular repetition*)
 → position, dimension constraints...

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 1: Construction of a Relationship Graph

Graph: - node = primitive - edge = relationship

Primitive parameters:

- orientations
- dimensions
- positions

Sphere: - position (x, y, z) - radius r

Cylinder: - position (x, y, z) - orientation (a, b, c) - radius r

Cone: - position (x, y, z) - orientation (a, b, c) - angle α

Set of primitives+parameters and the neighborhood relationships.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 1: Construction of a Relationship Graph

Primitive parameters:

- orientations
- dimensions
- positions

Tolerances:

- angle
- dimension
- distance

Relationships:

- angle between orientations
- difference between dimensions
- distance between positions

 \rightarrow Relationship Graph: geometric relations between each pair of primitives (up to some tolerances).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 1: Construction of a Relationship Graph

Graph: - node = primitive - edge = relationship

Relationship Graph

Neighborhood Parallelism Orthogonality Coplanarity

...

Primitive parameters:

- orientations
- dimensions
- positions

Tolerances:

- angle
- dimension
- distance

Relationships:

- angle between orientations
- difference between dimensions
- distance between positions

 \rightarrow Relationship Graph: geometric relations between each pair of primitives (up to some tolerances).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

1) Definition of a Relationship Sub-Graph for each Feature;

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

1) Definition of a Relationship Sub-Graph for each Feature;

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

1) Definition of a Relationship Sub-Graph for each Feature;

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

- 1) Definition of a **Relationship Sub-Graph** for each feature.
- 2) Recognition of the Sub-Graph in the overall Relationship Graph.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

- 1) Definition of a Relationship Sub-Graph for each feature.
- 2) Recognition of the Sub-Graph in the overall Relationship Graph.

Features are recognized by finding one of their primitives (e.g. a cylinder) and then aligning their Sub-Graph with the Relationship Graph.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 2: Feature Recognition

- 1) Definition of a Relationship Sub-Graph for each feature.
- 2) Recognition of the Sub-Graph in the overall Relationship Graph.

Features are recognized by finding one of their primitives (e.g. a cylinder) and then aligning their Sub-Graph with the Relationship Graph.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

- 1) A Feature is then defined by its Sub-Graph type and some parameters (based on primitives constituting it).
- 2) Define a **Feature Graph** based on the recognized Features (types+parameters) in the Relationship Graph.
- Based on this Feature Graph, recognize recursively a Pattern of 2 similar Features (same type and parameters (up to some tolerances)).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Step 3: Pattern Recognition

 If several Patterns are possible, select the optimal one according to some rules.

- maximize the total number of grouped Features;
- minimize the degree;

maximize the number of Features in Sub-patterns;

minimize the distance between the two Features/Sub-patterns.

Selection rules:

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Application to Beautification

Once features and patterns have been recognized:

1) Feature: **relative regularization** of all the primitive parameters based on the constraints of the Relationship Subgraph.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Application to Beautification

Once features and patterns have been recognized:

1) Feature: **relative regularization** of all the primitive parameters based on the constraints of the Relationship Subgraph.

The axes of the two cylinders are aligned within the Feature.

Experimental Results

Perspectives

Application to Beautification

Once features and patterns have been recognized:

 Feature: relative regularization of all the primitive parameters based on the constraints of the Relationship Subgraph. Definition of Feature parameters= common parameters.

Feature parameters = position+orientation of the common axis.

Experimental Results

Perspectives

Application to Beautification

Once features and patterns have been recognized:

- Feature: relative regularization of all the primitive parameters based on the constraints of the Relationship Subgraph. Definition of Feature parameters= common parameters.
- 2) Pattern = global regularization of the Feature parameters.

Feature parameters = position+orientation of the common axis. The 3 axes are positioned in the same plane and equidistant.

CAD-driven Feature and Pattern Recognition

Experimental Results ●○ Perspectives

3D mesh of a Lego bar with a structured-light scanner (accuracy \approx 100 μ m).

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Planes: 5 Cylinders: 11

Detection of primitives and parameters Plane: position+orientation Cylinder: position+orientation+radius

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives
		\odot	

Lego bar

• Feature 1: 2 concentric cylinders (violet+yellow)

• Feature 2: cylinder (pink)

Feature beautification \longrightarrow concentric cylinder axes are aligned.

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives
		•0	
			,

Lego bar

- Pattern 1: 4 × Feature 1
- Pattern 2: 3 × Feature 2

 \longrightarrow Feature axes are aligned and made equidistant.

Introduction	

Experimental Results

Perspectives

Lego bar

- Pattern 1: 4 × Feature 1
- Pattern 2: 3 × Feature 2
 - \longrightarrow Feature axes are aligned and made equidistant.
 - \longrightarrow Feature radii are equalized inside a Pattern.

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives
		\odot	

Lego b<u>ar</u>

Can be compared with the CAD model for control.

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Clamp connector

341 primitives (planes, cylinders, cones).

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results ○●	Perspectives
Clamp con	nector		
Pattern recogn • • •	Degree 0		

8 Features "counterbore".

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results ○●	Perspectives
Clamp con	nector		

Sub-pattern of 2 Features.

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results ○●	Perspectives
Clamp co	onnector		
	Degree 2		
	and the second	D	

Pattern recognition

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results ○●	Perspectives
Clamp con	nector		
Pattern recog	Degree 3		

Pattern of 2 Sub-patterns of 2 Sub-patterns of 2 Features?

CAD-driven Feature and Pattern Recognition

Experimental Results

Perspectives

Clamp connector

 $\begin{array}{c} R^3(R^2(R^1(p_1^0,p_2^0),R^1(p_3^0,p_4^0)),\\ R^2(R^1(p_5^0,p_6^0),R^1(p_7^0,p_8^0))) \end{array}$

Introduction of a new mirror-type Pattern rule \rightarrow Sub-patterns of opposite orientation.

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives ●O
Perspectiv	es		

Recognize more types of Features and more configurations of Patterns.

M. Pauly et al.. Discovering structural regularity in 3D geometry. ACM Transactions on graphics, 2008. Q. Wang and X. Yu. Ontology based automatic feature recognition framework. Computers in Industry, 2014.

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives ○●
Perspectiv	es		

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives ○●
Perspective	es		

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives ○●
Perspective	es		

Introduction	CAD-driven Feature and Pattern Recognition	Experimental Results	Perspectives ○●
Perspective	es		

Thank you Some questions?

Email: gerard.subsol@lirmm.fr

Silvère Gauthier, W. Puech, R. Bénière, **G. Subsol**, *CAD-driven pattern recognition in reverse engineered models*, 2019

